Learning Generative Models for Monocular Body Pose Estimation
نویسندگان
چکیده
We consider the problem of monocular 3d body pose tracking from video sequences. This task is inherently ambiguous. We propose to learn a generative model of the relationship of body pose and image appearance using a sparse kernel regressor. Within a particle filtering framework, the potentially multimodal posterior probability distributions can then be inferred. The 2d bounding box location of the person in the image is estimated along with its body pose. Body poses are modelled on a low-dimensional manifold, obtained by LLE dimensionality reduction. In addition to the appearance model, we learn a prior model of likely body poses and a nonlinear dynamical model, making both pose and bounding box estimation more robust. The approach is evaluated on a number of challenging video sequences, showing the ability of the approach to deal with low-resolution images and noise.
منابع مشابه
Combined discriminative and generative articulated pose and non-rigid shape estimation
Estimation of three-dimensional articulated human pose and motion from images is a central problem in computer vision. Much of the previous work has been limited by the use of crude generative models of humans represented as articulated collections of simple parts such as cylinders. Automatic initialization of such models has proved difficult and most approaches assume that the size and shape o...
متن کاملHuman Pose Estimation from Monocular Images: A Comprehensive Survey
Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we...
متن کاملAn Optimization Based Framework for Human Pose Estimation in Monocular Videos
Human pose estimation using monocular vision is a challenging problem in computer vision. Past work has focused on developing efficient inference algorithms and probabilistic prior models based on captured kinematic/dynamic measurements. However, such algorithms face challenges in generalization beyond the learned dataset. In this work, we propose a model-based generative approach for estimatin...
متن کاملGenerative 2D and 3D Human Pose Estimation with Vote Distributions
We address the problem of 2D and 3D human pose estimation using monocular camera information only. Generative approaches usually consist of two computationally demanding steps. First, different configurations of a complex 3D body model are projected into the image plane. Second, the projected synthetic person images and images of real persons are compared on a feature basis, like silhouettes or...
متن کاملUsing a single RGB frame for real time 3D hand pose estimation in the wild
We present a method for the real-time estimation of the full 3D pose of one or more human hands using a single commodity RGB camera. Recent work in the area has displayed impressive progress using RGBD input. However, since the introduction of RGBD sensors, there has been little progress for the case of monocular color input. We capitalize on the latest advancements of deep learning, combining ...
متن کامل